
We see that allowing for the effect of gradients of t ransport  velocities in a rarefied gas has led to the 
appearance of additional t e rms  in the dissipation function, each coinciding in structure with the term T divV0, 
while the remainder  have a more specific form. When there are considerable gradients of t ransport  velocities 
over the volume elements,  the contribution of the te rms with coefficients fl and T will be appreciable. Even 
in the case of an incompressible gas the dissipation energy due to the specific terms can be appreciable. 
Clearly, one must take account of this kind of variation of the dissipation function, due to volume elements, in 
the case of gases and liquids which have a complex microstructure.  

NOTATION 

V, total molecular  velocity vector; u, v, w, components of the molecular velocity describing an ordered 
motion; ~, ~, ~, components of the molecular velocity describing a random motion; p, pressure;  D, density; 
u0, v 0, w0, components of the hydrodynamic volume element; T, temperature;  fl, T, R, constants. 
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E X E R G Y  R E P R E S E N T A T I O N  IN T H E  T H E R M O D Y N A M I C S  

OF I R R E V E R S I B L E  P R O C E S S E S  

G. P .  Y a s n i k o v  and  V. S. B e l o u s o v  UDC 536.70 

It is proposed to use the exergy of a system as the thermodynamic Lagrangian. The correspond- 
ing variational principle is formulated and its relationship to other variational principles of non- 
equilibrium thermodynamics is demonstrated. 

For  constant parameters  of the surrounding medium the exergy is a function of the thermodynamic state 
[1, 2] and in general  depends on the generalized coordinates and velocities xi, xi" For the case of flux the 
exergy may be expressed in the form of two alternative forms (Euler and Lagrange) [3]: 

8E -~  6 E  (L) -l- 6K, (1) 
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6E (L) = 61 - -  To6S. (2) 

For a stationary s y s t e m  

6E = 6U --  To6S § Po6V. (3) 

If a cer ta in  sys tem is not in equilibrium with the ambient, it may do work 

6L = - -  6 E - -  6L*. (4) 

This work reaches  a maximum when the t ransi t ion of the sys tem into equilibrium with the ambient is not ac-  
companied by any dissipative p rocesses  (6L* = 0), i . e . ,  when it is revers ib le :  

6 L m a  x = - -  6E. (5) 

The quantity 6Lma x was used by Landau and Lifshits  to cons t ruc t  a theory of thermodynamic  fluctuations and 
to analyze the conditions of stability and a number  of dissipative p roces se s  [4]. Integrating Eq. (4) with re -  
spect to t ime, we may write down the following variat ional  condition: 

t ,  i 

The sum on the left-hand side includes the work of the external fields and the dissipative forces  (exergy losses  
6L*) and may be represen ted  as follows: 

i i 

For  purely mechanical  sys tems  bE (L) = 0 and the exergy in the Euler  form coincides with the kinetic energy 
of the macroscop ic  motion of the sys tem (1). In this case the variat ional  condition (5) gives the expression 
for the Hamilton principle in analyt ical  mechanics  [5, 6]: 

t' + E dt = o, (s) 

f rom which the Lagrange equations follow. Fo r  a sys tem in external  conservat ive  fields the integrand in (8) 
equals the Lagrange function ~ = K--II. 

For  a s tat ionary thermodynamic sys tem without dissipation (6L* = 0) Eq. (6) takes the form 
t z  

i 6Edt = O. (9) 

Assuming that E = E(S, V), U = U(S, V) and allowing for (3), we may evaluate oE: 

6E = (\ O0-~-)v, 6S__ ~,,[' OUov "sl 6V--T~ ~' p~176176 (10) 

Since 6E does not depend on the time, while the integration range t l - t  2 is a rb i t ra ry ,  Eqs. (9) and (10) yield 
the conditions of thermodynamic  equilibrium of the system: p = P0, T = T 0. It is easy to show [4] that o2E > 0 
and that in a state of equilibrium the function (3) has a minimum. 

[4] 

A S -  Lmax -- AE 
I 

To To 

Defining the thermodynamic forces  in the usual way [7], with the aid of Eq. (11) we may express  these in 
t e rms  of the exergy of the system: 

OAS 1 OLma x 1 OE 
X~.  

Ox~ T O Ox~ T o Ox~ 

The deviation of the entropy of the sys tem and the ambient f rom the maximum value at equilibrium is 

(11) 

(12) 

Thus, the derivative 

OE 
= ToXi = Q~ (13) 

ax~ 
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defines ce r t a in  the rmodynamic  f o r c e s  in the exe rgy  representa t ion .  
p e r a t u r e  

6E -- 6 (AE) = - -  To6AS 

and subst i tut ing bE into the var ia t iona l  condition (6), we obtain - 
t ,  

.f ( -  As) + ] = 0 .  

By varying (11) at constant  ambient  tern-  

(14) 

(15) 

Equation (15) represents the variational principle of Bakhareva [8]. After giving detailed considera- 
tion to the mechanical analogs of nonequilibrium thermodynamics [9], Bakhareva chose --AS as the thermo- 
dynamic Lagrangian. 

Since AS = f(xi), the variational principle (15) only describes inertialess processes. There is no analog 
to the kinetic energy in this case. In this sense the construction of (6) is more general, since the exergy of the 
system may include the kinetic energy, so that in principle inertial effects may be taken into account. Thus, 
the variational condition (6) may be used to describe thermomechanical processes. 

By way of example, let us consider the motion of solid particles in a field of gravitational forces and a 
resistant medium at constant temperature. 

The system of Euler--Lagrange equations for the variational condition (6) with due allowance for (7) 
takes the form 

d d o E  OE = Q~. (16) 
dt OJq ax i 

We shall  cons ider  the med ium and the p a r t i c l e  as a single adiabat ical ly  insulated sys tem.  In accordance  with 
(1) the exe rgy  of this s y s t e m  is  

E = E ~L) (Xi) ~, I((Xi). (17) 

The grav i ta t iona l  fo rce  acting on each  pa r t i c l e  m a y  be r e p r e s e n t e d  as follows: 

OH 
Q~ = - - ~  (18) 

Oxl 

Substituting (17) and (18) into (16), we obtain 

where  ~E(L) / sx  i = Q~ in accordance  with (13) const i tu tes  the r e s i s t i v e  fo rce  of the ambient .  
Lagrang ian  ~ = K--I[  into (19), we obtain the Lagrange  equation in the o rd inary  fo rm [5, 6]: 

d OK OH 
+ -- Q~, (19) 

dt OJq Ox~ 

Introducing the 

d 0 ~  0~kP __ O~. (20) 
dt O:q Ox~ 

It was shown in [9] that  for  the adiabat ic  s y s t e m  

OAS Oq) 
Oxk - Ox~ ' (21) 

where  4~ (Xk) is  the sca t te r ing  function or  the d iss ipa t ive  function in the en t ropy representa t ion .  

Multiplying both s ides  of (21) by T O and allowing for  (12)-(14), we obtain 

OE _ _ V  ~ OAS _ To o ~  _ Of _Q~  (22) 
Oxl Ox~ Ox~ Ox i 

(f = #T0). Substituting (22) into (20), we obtain the Lagrange  squation for  the pa r t i c l e s  in the fo rm [4] 

u 0~t 0~t of . . . .  (23) 
dt Ofq ax i OJq 

In o rde r  to wr i te  down the var ia t iona l  equation analogous to (6) for  continuous sys t ems ,  the p a r a m e t e r s  of 
which fo rm cor responding  sca la r ,  vec tor ,  and t enso r  fields,  we dif ferent ia te  (4) with r e s p e c t  to t ime ,  a s s u m -  
ing that  there  is no dist inct  ex te rna l  object  of work  (SL = 0): 

6E + 6L* = O. (24) 
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R e m e m b e r i n g  that  

i~ = ( p i n y ,  (25) 

we put (24) in the fo rm 

L* = 1 fdV, (26) 

f (~ + f )  dV = o. ( 2 7 )  

By way of i l lus t ra t ion,  let us apply the var ia t iona l  condition (27) to the descr ip t ion  of heat  conduction in a 
solid. We wri te  down the balance equation for  the exergy:  

pe = - -  divT~ - -  %. (28) 

The sink (~e, the d iss ipa t ive  function f, and the flux J e  with due allowance for  [2, 7] may  be e x p r e s s e d  in the 
fo rm 

~ = r . 7 . ~ ; -  V,  f=~r~,c~ ~ ; jo= 1 - T  7~. 

We set  down the identity 

d i v ~ - d i v  1-- T / q : -  T~ V ~ '-- -V" q T V" 
. - p  

Substituting a e and J e  f rom (29) into (28) and then (28) and f f rom (29) into (27) and using the G a u s s - - O s t r o -  
gradski i  equation, we obtain 

' ~ - ~ 7 ~ . ~  (31) 
v s 

In (31) we shall  only va ry  w Rh_.respect to 1/T,  consider ing that  ~Jq = 0 and 1/T does not va ry  along the 
boundary. Expres s ing  the V. Jq  in (31) on the bas i s  of the f i r s t  law of t he rmodynamics  

OT - ~ (32) 
PCv-- - -  V "  Jq  

Ot 

and ca r ry ing  out the var ia t ion  operat ion,  we obtain 

V 

It follows f rom {33) that  

eT _ - ~ . L u -  ~ l 
pc~ Ot -T- 

(33) 

(34) 

or  in the usual  r ep resen ta t ion  X = LqqT -2 

0T 
o~ --aT- = v-(~vr). 

F r o m  the var ia t iona l  condition (27) it is  easy  to t r a n s f o r m  to the G y a r m a t i s  var ia t iona l  pr inciple  [7]. 
F o r  this we dif ferent ia te  (27) with r e s pec t  to the ambient  t empera tu re :  

From (3) 
V 

fiF o 

The derivative ~ f/DT 0 is equal to the scattering function [7] 

(35) 

(36) 

of  = a)(~, ~), 
OTo 

( 3 7 )  
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since f= T0@(X , X). From the entropy balance equation we may write p~ as 

Substituting (36), (37), and (38) into (35) and using the Gauss--Ostrogradskii theorem, we obtain 

{S = o. 
V $ 

Variation at constant fluxes gives the Gyarmatis principle [7] in the form 

8 ~I [~, - -~]~dV = 0 
V 

or, if we substitute (36) and (37) into (35), 

(3s) 

(39) 

(40) 

6 .! [ps-- ~l dV =0. (41) 
V 

In conclusion, we note that in [10], Bakhareva made a detailed study of the analytical relationship 
between the variational principle (15) and other variational principles of nonequilibrium thermodynamics. 
Since we may transform from (6) to (15), it is clear that the exergy representation also has a connection with 
the other variational principles of Onsager [7], Biot [11], and Siegler [12]. Finally, in [13, 14] irreversible 
processes are described by means of the Gibbs potential, the variation of which coincides with the variation of 
the exergy provided that the temperatures and pressures of the system and medium are equal. 

NOTATION 

E, E(L), total exergies of the system in the Euler and Lagrange forms, respectively; L, Lma x, work 
done by the system and maximum work of the system; U, I, S, V, total internal energy, enthalpy, entropy, 
and volume of the system; e, s, specific exergy and entropy; K, 11, kinetic and potential energies; ~', 
Lagrangian; L*, exergy losses; Q, X, generalized forces in the exergy and entropy representations; ~, f, 
dissipative function or scattering function; J-*q, J-*e, J-'s, flows of heat, exergy, and entropy; ere, as, specific 
powers of the exergy and entropy sources; Lqq, phenomenological coefficient; k, thermal conductivity; Cv, 
specific heat of the system at constant volume; p, density; xi, x i, generalized velocities and coordinates; t, 
time; P0, To, ambient pressure and temperature. 
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